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1. Introduction

The recent realization that some extended objects in fundamental string theory [1] can

have cosmological size has triggered a lot of interest both in the fundamental string and the

cosmic string community. In braneworld scenarios, big quantities of two types of cosmic size

“strings” (cosmic superstrings) can be produced [2] when brane-antibrane pairs annihilate

each other: fundamental (F) strings and Dirichlet (D) strings, which can be either a one

dimensional brane (D1-brane) or a higher dimensional brane with all but one dimension

compactified. These two kinds of strings interact with each other [3] forming bound states:

p F-strings can interact with q D-strings to form (p,q) bound states, resulting in a network

of F-, D- and FD-strings.

Networks of (p,q) strings have been investigated in several papers lately, both an-

alytically and numerically, and both in the realms of fundamental strings and solitonic

gauge strings [4 – 8]. The dynamics of a (p,q) network is more complicated than “usual”

(solitonic) cosmic strings: The intercommutation of solitonic strings is almost always one,

whereas in (p,q) strings it is usually less than one, and often much less than one. Generally,

solitonic strings do not form bound states, so that 3-way Y junctions do not form, whereas

(p,q) strings are known to form stable bound states, and therefore create Y junctions. All

strings in a network of ordinary solitonic strings have the same tension, whereas there is a

whole range of different tensions in a (p,q) network.

Properties of ordinary (solitonic) comics strings have been thoroughly studied, and

their network properties are better understood than those of (p,q) strings. They are known

– 1 –



J
H
E
P
0
7
(
2
0
0
8
)
0
0
6

to be generically formed in supersymmetric hybrid inflation [9] and grand unified based

inflationary models [10]. There has been considerable effort in numerically modelling net-

works to obtain observables; for example, modeling field theoretical cosmic strings to obtain

CMB power spectra [11].

The gravitational properties of solitonic cosmic strings have also been studied in detail

by minimally coupling the Abelian Higgs model to gravity. Far away from the core of the

string, the space-time has a deficit angle, i.e. corresponds to Minkowski space-time minus

a wedge [12]. The deficit angle is in linear order proportional to the energy per unit length

of the string. If the vacuum expectation value (vev) of the Higgs field is sufficiently large

(corresponding to very heavy strings that have formed at energies much bigger than the

GUT scale), the deficit angle becomes larger than 2π. These solutions are the so-called

“supermassive strings” studied in [13] and possess a singularity at a maximal value of the

radial coordinate, at which the angular part of the metric vanishes. Interestingly, it was

realized only a few years ago [14, 15] that both the globally regular string solution as well

as the supermassive solution have “shadow” solutions that exist for the same parameter

values. The string-like solutions with deficit angle < 2π have a shadow solution in the form

of so-called Melvin solutions, which have a different asymptotic behaviour of the metric and

have higher energies than their string counterparts (and are thus very likely cosmologically

not relevant). The supermassive string solutions on the other hand have shadow solutions

of Kasner-type. Kasner solutions possess also a singularity at some finite radial distance,

the difference is that for Kasner solutions, the tt-component of the metric vanishes at this

maximal radial distance, while the angular part of the metric diverges there. Since both

supermassive as well as Kasner solutions contain space-time singularities they are surely

of limited interest for cosmological applications.

It is partly due to the fact that advanced machinery exists to study solitonic strings

that different authors have tried to capture properties of (p,q) string networks using field

theoretical models. One can construct field theory models that give rise to solitonic strings

that share some of the properties of cosmic superstrings. For example, Abelian Higgs

strings can have a reconnexion probability which is less than one when the strings meet at

very high velocities [16]. Also, type-I Abelian Higgs strings can form bound states (and

have strings of different tensions) when they meet at low velocities [17, 7], or if a network

of (type I) strings with high winding numbers forms in a thermal phase transition [18]. In

models with SUSY flat directions strings with type I properties can also be formed [19].

A maybe more realistic approximation is given by the models of Saffin [5] and Rajantie,

Sakellariadou and Stoica [6], where two independent Abelian Higgs string models are cou-

pled via an interacting potential. The strength with which the strings interact and form

bound states can be controlled by the parameters in the potential, giving rise to numerically

more feasible and controllable simulations, including network simulations [6, 8].

In this paper we couple minimally the models of Saffin and Rajantie et al. to gravity,

and investigate the gravitating properties of this field theoretical approximations of (p,q)

cosmic superstrings. In the next section we describe the models and set up the ansätze and

boundary conditions. In section 3 we report the numerical solutions found for the models

studied, and then conclude.
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2. The model

The models we are studying are given by the following action:

S =

∫

d4x
√
−g

(

1

16πG
R + Lm

)

(2.1)

where R is the Ricci scalar and G denotes Newton’s constant. The matter Lagrangian Lm

reads:

Lm = Dµφ(Dµφ)∗ − 1

4
FµνFµν + Dµξ(Dµξ)∗ − 1

4
HµνH

µν − V (φ, ξ) (2.2)

with the covariant derivatives Dµφ = ∇µφ − ie1Aµφ, Dµξ = ∇µξ − ie2Bµξ and the field

strength tensors Fµν = ∂µAν − ∂νAµ, Hµν = ∂µBν − ∂νBµ of the two U(1) gauge potential

Aµ, Bµ with coupling constants e1 and e2. The fields φ and ξ are complex scalar fields

(Higgs fields).

We will study two different potentials, corresponding to Saffin [5] (V1) and Rajantie et

al. [6] (V2)

V1(φ, ξ) =
λ1

4

(

φφ∗ − η2
1

)2
+

λ2

4

(

ξξ∗ − η2
2

)2 − λ3

(

φφ∗ − η2
1

) (

ξξ∗ − η2
2

)

(2.3)

and

V2(φ, ξ) =
λ̃1

4

(

φφ∗ − η2
1

)2
+

λ̃2

4η2
1

φφ∗
(

ξξ∗ − η2
2

)2
(2.4)

In the first model1 (V1) the interaction term makes the strings form a bound state

depending on the value of ∆ = λ1λ2 − 4λ2
3 [20, 5]: for 0 < ∆ < 1

2

√
λ1λ2 bounds states

will be formed. In this paper we will investigate the special case where the parameters

correspond to the Bogomol’nyi limit (more explicitly, to what would be the Bogomol’nyi

limit if λ3 = 0 and G = 0)

λ1 = 2e2
1 λ2 = 2e2

2 (2.5)

and we will eventually rescale parameters such that η1 = η2 = e1 = e2 = 1, though we will

keep them explicit throughout our equations. It is also worth reminding that by setting

λ3 = 0 we recover two non-interacting Abelian Higgs strings in curved space-time.

For the second case, the interaction ensures that it is energetically favourable to form

bound states for λ̃1 > 0 and λ̃2 > 0 (otherwise, the potential will not be bounded from

below). This is clearly seen by observing that the potential energy of the ξ field vanishes

where χ = 0, therefore favouring that both string cores lie on top of each other.

2.1 The Ansatz

In the following we shall analyse the system of coupled differential equations associated

with the gravitationally coupled system described above. This system will contain the

Euler-Lagrange equations for the matter fields and the Einstein equations for the metric

fields. In order to do that, let us write down the matter and gravitational fields as shown

1This type of potential has also been studied in relation to composite topological defects [20, 21].
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below. The most general, cylindrically symmetric line element invariant under boosts along

the z−direction is:

ds2 = N2(ρ)dt2 − dρ2 − L2(ρ)dϕ2 − N2(ρ)dz2 . (2.6)

The non-vanishing components of the Ricci tensor Rν
µ then read [14]:

R0
0 = −(LNN ′)′

N2L
, Rρ

ρ = −2N ′′

N
− L′′

L
, Rϕ

ϕ = −(N2L′)′

N2L
, Rz

z = R0
0 (2.7)

where the prime denotes the derivative with respect to ρ.

For the matter and gauge fields, we have [22]:

φ(ρ, ϕ) = η1h(ρ)einϕ , (2.8)

ξ(ρ, ϕ) = η1f(ρ)eimϕ , (2.9)

Aµdxµ =
1

e1
(n − P (ρ))dϕ . (2.10)

Bµdxµ =
1

e2
(m − R(ρ))dϕ . (2.11)

n and m are integers indexing the vorticity of the two Higgs fields around the z−axis.

2.2 Equations of motion

We define the following dimensionless variable and function:

x = e1η1ρ , L(x) = η1e1L(ρ) . (2.12)

Then, the total Lagrangian only depends on the following dimensionless coupling con-

stants

γ = 8πGη2
1 , g =

e2

e1
, q =

η2

η1
, βi =

λi

e2
1

, i = 1, 2, 3 or β̃i =
λ̃i

e2
1

, i = 1, 2 . (2.13)

Varying the action with respect to the matter fields and metric functions, we obtain

a system of six non-linear differential equations. The Euler-Lagrange equations for the

matter field functions read:

(N2Lh′)′

N2L
=

P 2h

L2
+

1

2

∂Vi

∂h
, i = 1, 2 (2.14)

(N2Lf ′)′

N2L
=

R2f

L2
+

1

2

∂Vi

∂f
, i = 1, 2 (2.15)

L

N2

(

N2P ′

L

)′

= 2h2P , (2.16)

L

N2

(

N2R′

L

)′

= 2g2f2R , (2.17)

where the prime now and in the following denotes the derivative with respect to x.
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We use the Einstein equations in the following form:

Rµν = −γ

(

Tµν − 1

2
gµνT

)

, µ, ν = t, x, ϕ, z (2.18)

where T is the trace of the energy momentum tensor T = T λ
λ and the non-vanishing

components of the energy-momentum tensor are (we use the notation of [14]) with i = 1, 2:

(T 0
0 )i = ǫs + ǫv + ǫw + ui

(T x
x )i = −ǫs − ǫv + ǫw + ui

(Tϕ
ϕ )i = ǫs − ǫv − ǫw + ui

(T z
z )i = (T 0

0 )i

(2.19)

where

ǫs = (h′)2 + (f ′)2 , ǫv =
(P ′)2

2L2
+

(R′)2

2g2L2
, ǫw =

h2P 2

L2
+

R2f2

L2
(2.20)

and

u1 =
β1

4

(

h2 − 1
)2

+
β2

4

(

f2 − q2
)2 − β3

(

h2 − 1
) (

f2 − q2
)

or

u2 =
β̃1

4

(

h2 − 1
)2

+
β̃2

4
h2

(

f2 − q2
)2

(2.21)

corresponding to the choice of potential V1 and V2, respectively.

We then obtain

(LNN ′)′

N2L
= γ

[

(P ′)2

2L2
+

(R′)2

2g2L2
− ui

]

, i = 1, 2 (2.22)

and:

(N2L′)′

N2L
= −γ

[

2h2P 2

L2
+

2R2f2

L2
+

(P ′)2

2L2
+

(R′)2

2g2L2
+ ui

]

, i = 1, 2 (2.23)

2.3 Boundary conditions

The requirement of regularity at the origin leads to the following boundary conditions:

h(0) = 0, f(0) = 0 , P (0) = n , R(0) = m (2.24)

for the matter fields and

N(0) = 1, N ′(0) = 0, L(0) = 0 , L′(0) = 1 . (2.25)

for the metric fields.

In the special case where n 6= 0 and m = 0 the boundary conditions (2.24) change

according to:

h(0) = 0, f ′(0) = 0 , P (0) = n , R(0) = 0 . (2.26)
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while for a n = 0, m 6= 0 string, they read

h′(0) = 0, f(0) = 0 , P (0) = 0 , R(0) = m . (2.27)

By letting the derivatives of the non-winding scalar field be zero at the origin instead

of imposing the boundary conditions for the fields themselves, the non-winding scalar field

can take non-zero values at the origin and, as it is indeed the case, a “condensate” of the

non-winding scalar field will form in the core of the winding string.

The finiteness of the energy per unit length requires:

h(∞) = 1, f(∞) = q , P (∞) = 0 , R(∞) = 0 . (2.28)

We define as inertial mass per unit length of the solution

Ein =

∫ √
−g3T

0
0 dxdϕ (2.29)

where g3 is the determinant of the 2 + 1-dimensional space-time given by (t, x, ϕ). This

then reads:

Ein = 2π

∫

∞

0
NL (ǫs + ǫv + ǫw + ui) (2.30)

As mentioned earlier, for Saffin’s model V1, β3 = 0 corresponds to two non-interacting

strings. In the BPS limit (the limit we are dealing with) the inertial mass (in units of 2π)

of the (1, 1) string is just Ein(γ) = 2. This is because the mass is equal to the sum of

the masses of the (1, 0)-string and of the (0, 1)-string, which is E
(1,0)
in (γ) = E

(0,1)
in (γ) = 1.

Correspondingly, the deficit angle (in units of 2π) is just δ/(2π) = 2γ.

We can then define the binding energy of an (n,m) string as

E
(n,m)
bin = E

(n,m)
in − nE

(1,0)
in − mE

(0,1)
in (2.31)

3. Numerical results

3.1 Generalities

The solutions for γ = 0, i.e. in flat space-time have been discussed in [5] and [6]. When

γ is increased from zero, the (p,q)-strings get deformed by gravity. If γ is not too large,

globally regular solutions exist. These solutions fall into two categories [14, 15]: the string

solutions and the Melvin solutions, where the latter have no flat-space counterpart. The

string solutions are those of astrophysical interest since they describe solutions with a

deficit angle and because the Melvin solutions are heavier than their string counterparts.

The metric functions then have the following behaviour at infinity:

N(x → ∞) → c1 , L(x → ∞) → c2x + c3 , c2 > 0 , (3.1)

where the ci, i = 1, 2, 3 are constants that depend on the choice of γ, βi, i = 1, 2, 3, q and

g. The solution has a deficit angle which is given by

δ = 2π(1 − c2) (3.2)

– 6 –
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h(x)=f(x)

P(x)=R(x)

Figure 1: The profiles of the metric functions N(x) and L(x) (left) and of the matter functions

P (x) = R(x), h(x) = f(x) (right) are shown for a Melvin solution (solid) and a string solution

(dashed). Here β1 = β2 = 2, β3 = 0.99, q = g = 1, γ = 0.5 and n = m = 1.

If the deficit angle δ > 2π, c2 < 0 and the solution would have a singularity at a finite,

parameter-dependent value of x = x0 with L(x = x0) = 0, while N(x0) stays finite. These

solutions are the so-called supermassive string solutions [13] (or inverted string solutions).

The Melvin solutions exist for the same parameter values as the string solutions, but

have a different asymptotic behaviour:

N(x → ∞) → a1x
2/3 , L(x → ∞) → a2x

−1/3 , (3.3)

where again a1 and a2 are parameter dependent constants. This latter solution is thus not

a cosmic string solution in the standard sense since it corresponds to a solution for which

the circumference of circles will decay in the asymptotic region.

The profiles of typical string and Melvin solutions are shown in figure 1.

3.2 String solutions for the potential V1

We have solved the above system of equations for βi = 2, i = 1, 2, g = 1 ( which for γ = 0

corresponds to the BPS limit) and q = 1. First, we have fixed γ = 0.5 and investigated the

dependence of the deficit angle on the binding parameter β3 and on the choice of n and m.

Note that in order for h(x) = 1, f(x) = 1 to be the global minimum of the theory for our

choice of the remaining parameters given above, we have to require 0 < β3 < 1.

Our numerical results are given in figure 2. The deficit angle is decreasing for increasing

β3 and tends to zero in the limit β3 → 1. This is expected, since the increase of β3 leads

to a stronger binding between the strings, the total energy decreases and thus results in

a smaller deficit angle. Moreover, the deficit angle for a fixed value of β3 is smaller for

an (n, n) string than for an (n + 1, n − 1) string, which itself is smaller than that for an

(n + 2, n − 2) string etc. This is clearly seen for the deficit angle of the (2, 0) string in

comparison to that of the (1, 1) string and accordingly for strings with n + m = 3 and

n + m = 4, respectively.
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β
3

δ/(2π)

γ=0.5

Figure 2: The value of the deficit angle δ (in units of 2π) is shown as function of β3 for γ = 0.5

and different values of (n, m).

It is also obvious from figure 2 that globally regular string solutions exist only for a

specific parameter range. For β3 = 0, the deficit angle is given by δ/(2π) = (n + m)γ.

Since globally regular string solutions exist only for δ ≤ 2π, we need (n + m)γ ≤ 1 or

for γ = 0.5, n + m ≤ 2. Thus, for our specific choice of γ and for β3 = 0 we would not

expect regular string solutions to exist for n + m ≥ 3. This is clearly seen in the figure,

where string solutions with deficit angle less than 2π exist for all values of β3 only for the

(1, 0), (1, 1) and (2, 0) cases. However, regular string solutions exist also for n + m ≥ 3

if β3 is large enough. For n + m ≥ 3 and a fixed value of γ, regular string solutions

exist for β3 > β
(cr)
3 (γ, n,m). We find e.g. β

(cr)
3 (0.5, 2, 1) ≈ 0.76, β

(cr)
3 (0.5, 3, 0) ≈ 0.86,

β
(cr)
3 (0.5, 2, 2) ≈ 0.89 and β

(cr)
3 (0.5, 4, 0) ≈ 0.94. The value β

(cr)
3 increases for n + m

increasing, since a higher total winding requires a higher binding energy in order to render

the string not too heavy. Moreover, for (n,m) = (n + k, n − k) strings, where 0 ≤ k ≤ n,

the value of β
(cr)
3 increases for increasing k.

We have also studied the dependence of the deficit angle on the gravitational coupling

for a fixed value of β3 = 0.95. The results are given in figure 3.

As expected the deficit angle increases for increasing γ and tends to 2π for γ →
γ(cr)(β3, n,m). Thus, globally regular strings exist only for γ ≤ γ(cr)(β3, n,m). This

critical value of the gravitational coupling decreases for n + m increasing and for a fixed

value of n + m and (n,m) = (n + k, n − k), 0 ≤ k ≤ n, decreases for k increasing.

Clearly, the specific choice of β3, γ and (n,m) determines whether globally regular

– 8 –



J
H
E
P
0
7
(
2
0
0
8
)
0
0
6

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

γ
 

 

(1,0)
(1,1)
(2,0)
(3,0)
(2,1)
(4,0)
(3,1)
(2,2)

δ/(2π)

β
3
=0.95

Figure 3: The value of the deficit angle δ (in units of 2π) is shown as function of γ for β3 = 0.95

and different values of (n, m).

solutions with deficit angle smaller than 2π exist. Increasing β3 leads to a stronger binding

between the strings, i.e. the energy of the (n,m)-string is lowered and hence globally

regular solutions exist for higher values of γ. This is demonstrated in figure 4 for (1, 0),

(1, 1) and (2, 1) strings. Here, we plot the value of the gravitational coupling up to which

the regular solutions exist, γ(cr), as function of β3. Note that regular solutions exist only

in the parameter domain below the respective curves. It is clear that the solutions exist for

higher values of γ when β3 is increased. This is related to the increase in binding energy,

e.g. for the (2, 1) solution with γ = 0.5, we find that E
(2,1)
bin ≈ −0.551 for β3 = 0.8, while

E
(2,1)
bin ≈ −0.652 for β3 = 0.95. In addition to the binding due to the potential, there is

an additional binding due to gravity. The larger γ, the stronger is the binding: e.g. for

β3 = 0.9, we find E
(2,1)
bin ≈ −0.621 for γ = 0.5, while E

(2,1)
bin ≈ −0.581 for γ = 0, in agreement

with what it has been reported [5].

3.3 String solutions for the potential V2

First, we have studied the solutions for β̃1 = β̃2 = 1, q = g = 1 and γ = 0.5 to understand

what qualitative differences appear in comparison to the potential V1. While in the case of

the V1 potential (and in the BPS limit) a (1, 0)-string is exactly equivalent to a (0, 1) string,

this is different here. As in the V1 case, when one string is winding and the other is not, the

non-winding string can form a condensate at the core of the other string. However, in this

case, a condensate of the ξ field in the core of a φ string does not lower the energy; whereas

– 9 –
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Figure 4: The value of γ(cr) is shown as function of β3 for (1, 0), (1, 1) and (2, 1) strings. Note

that globally regular solutions for the specific choices of (n, m) exist only in the parameter domain

below the corresponding curves.

a condensate of the φ inside the ξ core does. More specifically, for n = 1, m = 0, the scalar

field function f(x) is not forced to zero at the origin and could develop a condensate.

However, f(x) ≡ q everywhere and correspondingly R(x) = 0 gives the minimum for the

potential for the boundary conditions we have. On the other hand, for n = 0 and m = 1,

the scalar field function h(x) is also not forced to zero at the origin, but does develop a

condensate. At the origin, a value of h(x) < 1 is the value that minimizes the energy best.

Thus, a (1, 0)-string is different from a (0, 1) string. This can also be seen when looking at

the numerical values of the energies and deficit angles. For (1, 0), we find Ein ≈ 0.859 and

δ/(2π) ≈ 0.425, while for (0, 1), we have Ein ≈ 0.848 and δ/(2π) ≈ 0.418 (see also figure 7).

In figure 5 we show the dependence of the deficit angle on the gravitational coupling γ.

This is qualitatively very similar to the case with the V1 potential. Again, we observe that

globally regular string like solutions exist only up to a maximal value of the gravitational

coupling γ = γ(cr)(n,m). If one would increase γ further, the solutions would have a deficit

angle > 2π and would thus be singular. γ(cr)(n,m) decreases for n + m increasing and for

a fixed value of n + m and (n,m) = (n + k, n − k), 0 ≤ k ≤ n, decreases for k increasing.

As for the V1 case, the specific choice of β3, γ and (n,m) determines, whether globally

regular solutions exist. The fact that the strings interact and form bound states, lowers

their energy. Therefore, for values of γ and (n,m) where one would not expect regular

global solution in the non-interacting case, regular solutions exists when strings interact.
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Figure 5: The value of the deficit angle δ (in units of 2π) is shown as function of γ for β̃1 = β̃2 = 1,

q = g = 1 and different values of (n, m).

3.4 Melvin solutions

We have also studied the corresponding Melvin solutions for both potentials. Like their

string counterparts, they exist only in a limited domain of the parameter plane.

In the V1 case, for a fixed value of γ, β
(cr)
3 is equal for the string and Melvin solutions.

This has already been observed in the case of a single gravitating string [14, 15]. At this

β
(cr)
3 , the inertial energies Ein of the two types of solutions become equal. This is shown

in figure 6 for (n,m) = (3, 0) and (n,m) = (2, 1), respectively. At the critical value of β
(cr)
3

the curves of the inertial energies of the two types of solutions merge. Note also that for

all cases studied in this paper, the inertial energy of the Melvin solutions is larger than

that of the corresponding string solutions.

For β3 < β
(cr)
3 , the string solutions become inverted/supermassive string solutions with

a zero of the function L(x) at some parameter dependent value of x = x0, while N(x = x0)

stays finite. The Melvin solutions - on the other hand - become so-called Kasner solutions

with N(x = x̃0) = 0 and L(x → x̃0) → ∞ at some finite and parameter-dependent value

of x = x̃0. The inverted string and Kasner solutions thus exist only on a finite range of the

coordinate x and are thus sometimes also called “closed” solutions. These solutions have

singularities in their metric, and it is out of the scope of this paper to investigate their

implications.

We have also studied the Melvin solutions in the case of V2. Again, the qualitative

results are very similar to the case with V1. In figure 7, we show the dependence of the

inertial energy Ein on the gravitational coupling γ for β̃1 = β̃2 = 1, q = g = 1 and three
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Figure 6: The dependence of the inertial energy Ein on the binding parameter β3 is shown for string

and Melvin solutions with (n, m) = (3, 0) (solid) and (n, m) = (2, 1) (dashed). Here β1 = β2 = 2,

q = g = 1 and γ = 0.5.

different choices of (n,m). The inertial energy of the string solutions is always lower than

that of the Melvin solutions and the two branches of solutions meet at γ(cr), the maximal

value of the gravitational coupling, beyond which no globally regular solutions exist. As

before, the maximal value of the gravitational coupling decreases with n + m increasing.

We include both (1, 0) and (0, 1) solutions, since, as stated above, the do differ for the V2

case.

It has been observed previously [15] that the inertial energy of the Melvin solutions

doesn’t depend strongly on the winding number. The reason for this is that the main

contribution to the energy of the Melvin solution comes from the gravitational field and

is thus “insensitive” to the actual core structure of the solution. This explains why the

energy of the Melvin solution practically doesn’t depend on β3 (see figure 6), while it has

a strong dependence on the gravitational coupling (see figure 7). One could see these

effects by studying the gravitationally active mass, the so-called Tolman mass Mtol [23],

which for our definition of the metric is given by [14]: Mtol ∝ limx→∞(LNN ′). Clearly, for

the standard string solutions, this mass is zero, while for the Melvin solutions it is non-

vanishing. The Tolmann mass of the Melvin solutions would then depend on the windings

of the strings (see also the discussions in [15]).

4. Conclusions and discussion

In this paper we have studied the gravitating properties of strings arising in field theoretical

approaches to (p,q)-superstrings, by minimally coupling the field theoretical models to
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gravity. We find that there exist globally regular solutions of both the string type (solutions

with conical deficit) and the Melvin type for a finite domain in parameter space.

The existence of globally regular solutions depends very strongly on the (inertial)

energy of the underlying string specimen. Therefore, the specific choices of windings of

the strings and the string interaction (as well as obviously the strength of the gravitational

interaction) will determine whether regular solutions exists. Due to the interaction term,

the inertial energy of a (p,q) string is lower than the sum of the inertial energy of its

constituents; thus, the parameter region where regular strings exist gets enlarged with a

stronger interaction term. We also found that it is not only the interaction between strings

which makes the binding stronger, but a stronger gravitational interaction increases the

binding further.

Besides string-like solutions, we have also studied Melvin solution for these models.

Like their string counterparts, they exist for a finite range in parameter space, and the

range gets enlarged when the interaction between strings gets stronger. There is some

critical value of the parameters beyond which no regular solution exists. At that critical

value, the inertial energy of the Melvin and the string solution coincide, i.e. the solutions

are degenerate. For regular solutions at values of the parameters which are not critical,

the Melvin solution is always heavier than the string solution.

While we have studied the situation where we have straight infinitely long strings, it

would be very interesting to study the situation where three segments of strings meet in
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a Y junction. The gravitational lensing of such a Y junction has been studied for cosmic

superstrings using several approximations [24]. It would be interesting to see whether we

can learn something from the full study of these Y-junctions in field theory, and how they

could be translated to proper cosmic superstrings.

Another interesting situation would be the following: suppose that we have two strings

with winding numbers such that their regular solution exists for a given set of parameters.

Let us suppose also that the parameters are such that when these two strings interact to

form a new bound string, there is no regular solution of these new string. Then, we would

have formed a Y junction in which one of the legs is a “supermassive string” with a zero

of the metric at some finite value of the radial coordinate. This situation would be worth

studying.

There are other extensions of this work which deserve being studied. Even though

we are dealing with “extensions” of the Abelian Higgs model here, string solutions in

non-Abelian models have also been discussed [25]. It would be interesting to study the

gravitational effects of the bound states in such models.
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